본문 바로가기
대학원, 유학생활/lecture note

Fundamentals of GIScience

by lucky__lucy 2025. 9. 4.

1 Map Projection & Coordinate System (Aug 27)

 

2 Geographic Representation (Sep 3)

더보기

Geographic Features

Spatial Dimensions

  • 0 (point), 1 (line; distance, length), 2 (x, y; area), 2.5 (only z; DEM), 3-dimensions (x, y, z)

Characteristics

  • DBF, SHP, SHX (index file, topological relationship, order; when join to other files); PRJ, XML (metadata)

Data Models & Structure

  • Data Models: the logical means of data storage and organization for use in an information system → vector, raster, TIN
  • Data Structures: the logical and physical means by which a map feature or an attribute is digitally encoded (i.e., file type) → e.g., GDB, shapefile, coverage, ESRI grid, ERDAS image file

Vector

  • point, line (2 or more points), polygon (3 or more points, closed line)
  • georelational: links what with where
    • data structure:
      • shape file (spaghetti): Each contains 1 feature class (point, line, polygon); geometric data is linked with a separate attribute table in the “Shape” field in a binary format
      • coverage (topological): Each contains 1+ feature class (point “node” + tics, line “arc”, polygon, annotation); arc: 각 point의 coordinate 저장하지 않지만 각 point별로 연결된 point들 나열
  • geodatabase: links what with where by how
  • topology: adjacency (by arc; left, right polygon), connectivity (by polygon; # of arcs, list of arcs)
    • arc: lines of common boundary between 2 polygons
    • node: starting/ending point of arcs
    • critical points: any points within an arc that define the angle and distance of an arc segment

Raster

  • data structure
    • single layer: uncompressed, run-length encoding, Quadtree compression
    • multiple layers: BSQ, BIP, BIL
  • pixel classification problem

TIN

  • DEM: digital representation of the topography
  • TIN is generated by
    출처: https://www.researchgate.net/publication/325271931_Comparison_of_Inverse_Distance_Weighted_and_Natural_Neighbor_Interpolation_Method_at_Air_Temperature_Data_in_Malang_Region

    • Thiessen polygons 
      • 점 집합이 주어졌을 때, 각 점에 대해 해당 점이 가장 가까운 영역을 정의한 다각형.
      • 즉, 어떤 위치가 주어졌을 때 그 위치에서 가장 가까운 점(관측지점)을 찾을 수 있도록 하는 공간 분할.
    • Delaunay triangulation (a network of triangles is drawn such that the circle that surrounds the three points of the triangle contains no other points)
      • 같은 점 집합에 대해, 어떤 삼각망을 만들되 조건이 있음:
        • 어떤 삼각형의 외접원(Circumcircle) 안에는 다른 점이 존재하지 않음.
        • 이 조건을 만족하면 "잘생긴(triangle shape quality가 좋은)" 삼각형들이 만들어짐.
      • TIN 생성 시 실제 사용하는 것은 Delaunay Triangulation이며, 이는 Voronoi(Thiessen) 구조와 본질적으로 연결되어 있다.
    • Thiessen Polygon과 Delaunay 삼각망은 서로 쌍대 관계:
      •  Thiessen polygon의 꼭짓점을 연결하면 Delaunay 삼각형이 생성됨.
      • 반대로, 각 Delaunay 삼각형의 무게 중심/외심을 연결하면 Voronoi(Thiessen) polygon이 만들어짐.
  • good in pseudo 3D rendering, bad in computational intensive /than raster

GDB

  • = container

Data Transformation

  • v2v: might be info lost
  • v2r
  • r2r: resampling
  • r2v: skeletonizing → vector extraction → topological reconstruction

Open GIS Data

  • GML (Geography Markup Language)
    • XML approach for distributing and storing geographic information
    • not presentation language, programming language
    • trending: KML, GeoJSON
  • Paper discussion
  • Lab 1
    • Google Earth Pro: KML, KMZ
    • ArcGIS Pro: Layer to KML, Map to KML
    • GeoJSON

 

3 Interpolation (Sep 10)

더보기

Interpolation

  • the process of estimating the value of unknown locations across space from a set of observations

Data Type (Steven’s Level of Measurement)

  • Normal (e.g. name), Ordinal (e.g. ranking), Interval (e.g. temperature, altitude – arbitrary zero), Ratio (e.g. income)
  • (Date)
  • Directional (e.g., NEWS, time)
  • Fuzzy

Steps in the Interpolation Process

  1. Choose mathematical function and parameters
  2. Define neighborhood size/shape
  3. Find points in neighborhood
  4. Evaluate function for unknown points

Algorithms

  • Surface fitting: Fit a planar surface through the observed points

Nearest Neighbor Interpolation (i.e. Thiessen Polygons)

  • value at each grid cell location is equivalent to the value at the nearest observation (only one value)
  • using Thiessen Polygons
  • Advantage: most appropriate for qualitative data
  • Disadvantage: resulting surface is discontinuous with step-wise gradation between observed values, how to treat data on boundary?

Average Neighbor Interpolation

  • value at each grid cell location is an average of the value at the nearby observations
  • Advantages: Fast, Smooths the data
  • Disadvantages: Requires subjective selection of r (and hence k), Does not extrapolate (=estimate) beyond the minimum and maximum of observed values, Does not consider the distance and direction of observations, Not an exact interpolator (result in different result based on window, neighborhood, …)
  • can do sensitivity test to justify results

Inverse Distance Weighted (IDW) Interpolation

  • value at each grid cell location is a distance weighted average of the values at the nearby observations
  • p parameter
    • p 값이 작을수록 (예: p=1) → 거리에 따른 가중치 감소가 완만 → 멀리 있는 점들도 비교적 큰 영향을 가짐
    • p 값이 클수록 (예: p=3,4) → 거리에 따른 가중치 감소가 급격 → 가까운 점들이 훨씬 더 큰 영향을 가짐, 멀리 있는 점은 거의 영향 없음
  • Advantages: Results in a continuous and smooth surface Is an exact interpolator (i.e. derived surface passed through observed values)
  • Disadvantages: Requires subjective selection of parameters (k and p), Does not extrapolate beyond the minimum and maximum of observed values, Does not consider direction of observations

Polynomial

  • Best fit a smooth surface that is defined by a mathematical function to the observed locations
  • Order: a coefficient in determining how many “bends” the surface can have in fitting the observations
    • First: a flat surface (e.g. linear)
    • Second: a surface with one bend (e.g. quadratic)
    • Third: a surface with two bends (e.g. cubic)
    • Nth order polynomial
  • Global
    • Fit through all the points. The global surface changes gradually and captures coarse-scale pattern in the data.
    • Advantages: Allow extrapolation, Less subjective selection of parameter (only order of polynomial), Simple and easy to use
    • Disadvantages: Not an exact interpolator, Less applicable to a complex surface
  • Local
    • Seek a balance between the global trend and local influence. Fit multiple surfaces for each overlapping neighborhoods
    • Advantages: Allow extrapolation, A “pseudo” exact interpolator, Can model complex surface
    • Disadvantages: Subjective selection of parameters (order of polynomial and global/local trend), More complicated procedure in selecting neighborhood size/shape

Radial Basis Function (RBF)

  • Fit a smooth surface that passes through the observed locations by minimizing the total curvature of surface (i.e. change of slope), Often refer to as Spline
  • Advantage: Exact Interpolator, Allow extrapolation, Results in a smooth surface with gentle variation (than IDW)
  • Disadvantage: Does not work well with complex surface with abrupt changes, Mathematically complex

Kriging

  • Semivariance
        • First Law of Geography
        • Spatial autocorrelation: similarity of spatial pattern based on proximity
        • Semivariance: dissimilarity between observations (= half of square difference)
    • sill (height), range (distance where sill occurs), nugget (initial semivariance where distance is zero)
    • gives an idea to set neighborhood
      • An anisotropic surface has observations varying with direction
      • An isotropic surface has the same variation at each direction
  • Kriging is geostatistical method for spatial interpolation that is composed of 3 components: Spatial autocorrelation, A trend, Random errors
  • ****Types of Kriging
    • Ordinary Kriging – assumes the trend is an unknown constant
    • Simple Kriging – assumes the trend is a known constant
    • Universal Kriging – assumes the trend is a known deterministic function
    • Cokriging – uses the correlation of additional variable in calculating spatial autocorrelation

Evaluation

  • Cross Validation: assess quality of interpolation function
  • How to pick algorithm? Data type, ,error at observations, error between observations, general form of error?
  • Paper discussion
    • Comber, A., & Zeng, W. (2019). Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations. Geography Compass, 13(10), e12465. https://doi.org/10.1111/gec3.12465
    • Li, Z. (2021). An enhanced dual IDW method for high-quality geospatial interpolation. Scientific reports, 11(1), 9903. https://doi.org/10.1038/s41598-021-89172-w
  • lab 2-1
    • IDW, Kriging

 

4 Vector Overlay (Sep 17)

더보기

Geometric Primitives

  • point (x, y), line (a, b), line segment (x1, y1, x2, y2), polygon (n points)
  • centroid, intersect, contained

Line Intersect

  • 2 simple lines
    • if (x1-xp)(xp-x2) ≥ 0, P is on L1 else, P is not on L1
    • if (x1-xp)(xp-x2) and (x3-xp)(xp-x4) and (y1-yp)(yp-y2) and (y3-yp)(yp-y4)
    • when a1=a2 → 0 → makes error x1=x2, x3=x4 → 0 → makes error
    • Consider all scenarios, foolproof
  • Minimum bounding box (MBB)
    • Repeat for each line segment and point pairs

Points in Polygon

  • y=0x+b 0=not in polygon, 1=in polygon, 2=not in polygon odd = contains, even = doesn’t contain
  • MBB

Nearest Point

  • Calculate distance for every pair
  • Binary search
    • should give some buffer zone to the boundary

Nearest Feature

  • Geometry type
  • Link type
    • centroid, mass center (falls inside of geometry), closest vertex, closest point

Convex Hull

  • smallest convex set that contains all points
  • swiping algorithm

Vector Overlay

  • Preprocess
    • Merge, dissolve, eliminate
  • Overlay
    • Union, clip, intersect, split, symmetrical difference, identity, update, erase
  • Buffer
  • Paper discussion
    • Santangelo, M., Marchesini, I., Bucci, F., Cardinali, M., Fiorucci, F., & Guzzetti, F. (2015). An approach to reduce mapping errors in the production of landslide inventory maps. Natural Hazards and Earth System Science, 15(9), 2111-2126. https://doi.org/10.5194/nhess-15-2111-2015
    • Xie, P., Liu, Y., He, Q., Zhao, X., & Yang, J. (2017). An efficient vector-raster overlay algorithm for high-accuracy and high-efficiency surface area calculations of irregularly shaped land use patches. ISPRS International Journal of Geo-Information, 6(6), 156. http://dx.doi.org/10.3390/ijgi6060156
  • lab 2-2
    • wind direction
  • lab 3
    • Point buffer

 

5 Raster Modeling (Sep 24)

더보기

Cartographic Modeling

  • a collection of spatial operations and a common framework for developing geographic models

Local

  • Key concept: a location is a point or cell with a value across space
  • Method: A new value for every location is calculated from one or more existing layers at the same location

Focal

  • Key concept: a neighborhood is a set of locations that is a certain distance and direction away from a focal location
  • Method: A new value for every location is calculated based on the neighboring locations
  • Neighborhood parameters: size/shape, immediate/extended, focus, weighting of neighboring cells, overlapping, roving window application

Zonal

  • Key concept: a zone is a geographic area that shares a common attribute or characteristics
  • Method: A new value for every zone is calculated from one or more existing layers within the same zone

Global

  • Key concept: the output value at each cell depends on a global function that applies to all the cells from the input
  • Method: A new value for each cell is calculated as a function of an existing layer

https://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/performing-analysis/the-types-of-operations-in-spatial-analyst.htm

 

The types of operations in Spatial Analyst—ArcMap | Documentation

 

desktop.arcgis.com

Map Algebra

  • a set of logical rules and mathematical operations for cartographic modeling
  • local operations
    • mathematical (e.g. y=ax+b), statistical (e.g. Mean), relational (e.g. logical, reclassification, boolean)
  • focal
    • statistical, others (e.g. slope, aspect, flow, kernel density)
  • zonal
    • statistical, others (e.g. area, perimeter, region group[values→zone index])
  • global
    • (e.g. how far each cell is from a specific cell)

Data Flow Diagram

  • graphical representation of the logical steps in linking between an input and an output
  • Paper discussion
    • Pronk, M., Hooijer, A., Eilander, D., Haag, A., de Jong, T., Vousdoukas, M., ... & Eleveld, M. (2024). DeltaDTM: A global coastal digital terrain model. Scientific Data, 11(1), 273. https://doi.org/10.1038/s41597-024-03091-9
    • Devine, J. A., Currit, N., Reygadas, Y., Liller, L. I., & Allen, G. (2020). Drug trafficking, cattle ranching and Land use and Land cover change in Guatemala’s Maya Biosphere Reserve. Land Use Policy, 95, 104578. https://doi.org/10.1016/j.landusepol.2020.104578
  • lab 4
    • Raster calculation
더보기

Raw data

 

  1. Int: bathy_dem_10m to integer raster data
  2. Reclassify: integer raster data into 5 classes
  3. Region group
  4. Extract by attributes: the statement below was used
"VALUE" IN (69,70,72,74,75,76,84)

 

5. Zonal statistics as table:

 

6. Calculate from the table: 

  • Sum of area: 57,480,100 m^2
  • Sum of volume: 98,379,549,164 m^3 (= 98.38 km^3)
!VALUE!*!AREA!

 

6 Surface (Oct 1)

더보기

Basic Concepts

  • Surface: a continuous field of values that may vary over space
  • Surface Modeling: to extract useful information about the surface (E.g. spatial interpolation)
  • Topographic Modeling: to extract useful topographic information about the terrain landscape

Topographic Modeling

Contour

  • a line that connects points of equal value over a surface
  • Contour interval represents the break value of the vertical distance between contour lines
  • Base contour is the minimum value of contouring

Slope (focal operation)

  • the gradient of elevation change over a certain distance (where/how fast the surface is changing)
    • Rise over run
    • Expressed as degree or percent
  • slope of slope: can detect slope change (high value: big change of slope, edge of slope)

Aspect

  • the direction of the sloping surface (which direction the surface is changing)

Shaded Relief

  • Hillshading simulates how the terrain looks with the interaction between a hypothetical light source and surface features

Viewshed

  • Line of sight determines the visibility of a specific target from an observation point (visibility)

Cut/Fill

  • summarizes the areas and volumes of change between two surfaces. It identifies the areas and volume of the surface that have been modified by the addition or removal of surface material
    • Paper discussion
      • Ruzickova, K., Ruzicka, J., & Bitta, J. (2021). A new GIS-compatible methodology for visibility analysis in digital surface models of earth sites. Geoscience Frontiers, 12(4), 101109.  https://doi.org/10.1016/j.gsf.2020.11.006
      • Camelli, F., Lien, J. M., Shen, D., Wong, D. W., Rice, M., Löhner, R., & Yang, C. (2012). Generating seamless surfaces for transport and dispersion modeling in GIS. Geoinformatica, 16(2), 307-327. https://doi.org/10.1007/s10707-011-0138-3
    • lab 5


7 Distance & Cost (Oct 8)

더보기

Basic Concepts

  • distance is measured between two locations

Example: fire insurance

  • proximity
    • distance: straight line, network
    • time

Types of Distance

  • absolute vs relative
  • straight line
  • network
  • cost

Measuring Distance

  • planimetric
  • terrain distance (considering topography)
  • network (Manhattan) distance
  • cost (frictional) distance

Vector Approach

  • Dijkstra’s algorithm (1956)
    • find the shortest distance
  • service area
  • origin-destination matrix
  • traveling salesman problem
  • Paper discussion
    • Wang, S., Wang, M., & Liu, Y. (2021). Access to urban parks: Comparing spatial accessibility measures using three GIS-based approaches. Computers, Environment and Urban Systems, 90, 101713. https://doi.org/10.1016/j.compenvurbsys.2021.101713
    • Zou, H., Yue, Y., Li, Q., & Yeh, A. G. O. (2012). An improved distance metric for the interpolation of link-based traffic data using kriging: A case study of a large-scale urban road network. International Journal of Geographical Information Science, 26(4), 667–689. https://doi.org/10.1080/13658816.2011.609488
    • Atkinson, D. M., Deadman, P., Dudycha, D., & Traynor, S. (2005). Multi-criteria evaluation and least cost path analysis for an arctic all-weather road. Applied Geography, 25(4), 287–307. https://doi.org/10.1016/j.apgeog.2005.08.001
  • lab 6: Distances, Least Cost Path and Exposure Modeling
    • Euclidean Distance, Polyline to Raster, Cost Distance, Cost Path, Raster Calculator, Raster to Polyline, Calculate Geometry
더보기

[Task 5]

  • Create a raster layer of railroad network of population using Raster Calculator 
    • "usPop" * "rr"

8 Uncertainty (Oct 15)

더보기

Uncertainty

  • Error
    • Difference between measured and true value
    • +/-
    • random, systematic
  • Uncertainty
    • An interval around C measured & C true with a probability
    •  
  • Accuracy: the degree of closeness to best measured references
  • Precision: the exactness of measurements

GIS Assessments

  • Line
    • Epsilon band (e) (Blakemore, 1983)
    • G-band (Shi and Liu, 2000)
    • Hausdorff distance (Abbas, Grussenmeyer, and Hottier, 1995)
    • Buffer overlay (Goodchild and Hunter, 1997)
  • Polygon
    • Blakemore’s model (Blakemore, 1984)
      • A: Definitely in
      • B: Possibly in
      • C: Possibly out
      • D: Definitely out
    • G-band model (Shi., 2010)
  • Attributes
    • Quantitative
      • Signed error
      • RMSE
    • Thematic
      • Error matrix
      • Kappa statistics

Management

Options

  • Accuracy assessment
  • Sensitivity analysis (Chow and Hodgson, 2009)
  • Bayesian probability (Love, 2007)
  • Monte Carlo simulation (Chow et al., 2005)
  • Fuzzy accuracy assessment (Woodcock and Gopal, 2000)
  • Invariant vs variant regions (Brown et al., 2005)
  • Multi-scale analysis + fuzzy overlay (Fisher et al., 2005)

Sources of uncertainties

  • MAUP
  • Randomness
  • Vagueness
  • Ambiguity
  • Imprecision
  • Disequilibrium
  • Path dependency
  • Spatial autocorrelation
  • Paper 
    • Heuvelink, G. B. (2002). Analysing uncertainty propagation in GIS: why is it not that simple?. Uncertainty in remote sensing and GIS, 155-165.
더보기

🧭 연구 목적

  • GIS에서 사용하는 데이터(지형, 토양, 기후 등)는 측정 오류, 해상도, 모델 단순화 때문에 불확실성을 포함함.
  • 이런 불확실성이 **분석 결과에 어떻게 영향을 주는지(uncertainty propagation)**를 정량적으로 이해하려는 것이 목적.
  • 단순히 입력 데이터의 오차만 보는 게 아니라, 모델 구조와 공간적 상호작용까지 고려해야 함을 강조.

⚙️ 불확실성 전파의 복잡성 이유

  1. GIS 모델의 비선형성 (non-linearity)
    • 입력값이 조금만 바뀌어도 결과가 비선형적으로 달라짐 → 단순한 오차 계산이 어려움.
  2. 공간적 상관관계 (spatial correlation)
    • 인접한 지역끼리 데이터가 독립적이지 않음 → 확률적 모델링이 복잡해짐.
  3. 모델 결합 (model coupling)
    • 여러 GIS 도구를 연계하면 한 단계의 불확실성이 다음 단계로 전이됨.
  4. 확률 분포의 형태
    • 입력 데이터가 정규분포를 따르지 않을 수 있음 → 단순 통계 접근법이 한계.

🔍 대표적 접근 방법

  1. 오차 전파 공식 (error propagation formulas)
    • 수학적으로 오차가 어떻게 전달되는지 계산하지만, 선형 모델에만 적합.
  2. 몬테카를로 시뮬레이션 (Monte Carlo simulation)
    • 입력값을 확률적으로 반복 생성하여 결과 분포를 추정.
    • 계산량은 많지만 복잡한 모델에도 적용 가능.
  3. 지리통계학적 방법 (geostatistics)
    • 공간 상관성을 반영하여 불확실성의 공간적 분포를 추정.

🧩 사례 연구 요약

  • 실제 GIS 분석 예시(예: 지형 경사 분석, 알루미늄 농도 예측 등)에서,
    입력 데이터의 오차가 결과의 공간 패턴에 큰 영향을 미침을 보여줌.
  • 특히 공간적 상관을 무시하면 불확실성이 과대 혹은 과소 추정됨.

📊 결론

  • GIS의 불확실성 분석은 단순한 “오차 계산”이 아니라,
    공간적·통계적·모델적 복합 시스템 분석임.
  • 연구자와 실무자는 모델링 전 과정에서 불확실성을 명시적으로 다뤄야 함.
  • 향후 연구는 계산 효율성과 공간적 표현의 정확성을 함께 고려해야 함.

🧠 요약 포인트

  • GIS 결과의 신뢰성을 높이려면 불확실성 분석이 필수.
  • 선형 모델보다 비선형, 공간적 상관, 복합 입력을 고려한 접근 필요.
  • 몬테카를로 방법이 가장 일반적이고 실용적임.
  • "왜 단순하지 않은가?" → 현실의 데이터와 모델은 모두 복잡하게 얽혀 있기 때문.

 

  • Keil, J., O'Meara, D., Korte, A., Edler, D., Dickmann, F., & Kuchinke, L. (2024). How to visualize the spatial uncertainty of landmark representations in maps?. Journal of Environmental Psychology, 99, 102441. https://doi.org/10.1016/j.jenvp.2024.102441
더보기

🧭 연구 목적

  • 지도 속 랜드마크(건물, 장소 등)의 위치가 부정확하면 사람들이 실제 환경과 지도를 맞추기(map matching) 어렵다.
  • 특히 자원봉사자 제작 지도(OpenStreetMap) 같은 경우 정확도가 들쑥날쑥하다.
  • 그래서 이 연구는 “랜드마크 위치의 불확실성을 시각적으로 표시하면 사용자가 이를 더 잘 인식할까?”를 실험했다.

⚙️ 연구 방법

두 가지 실험을 진행함.

연구 1: 가상 3D 거리 환경

  • 가상 도로 장면과 해당 지도(2D)를 동시에 보여줌.
  • 지도 속 랜드마크 아이콘(예: 술집, 식당)을 실제 위치에서 일부러 ±40m 이동시켜 오차를 줌.
  • 불확실성 시각화 방법 세 가지 비교:
    1. 크기 변화(size): 위치 오차가 클수록 아이콘을 크게 표시
    2. 투명도(transparency): 오차가 클수록 아이콘을 더 투명하게
    3. 불확실성 원(uncertainty area): 아이콘 주위에 반투명 원 추가
  • 참가자 42명이 “지도와 환경이 일치하는가?”를 평가함.

결과:

  • 오차가 클수록 일치도 평가는 낮아짐.
  • 그러나 크기원(circle) 으로 불확실성을 표현하면 일치도 평가가 높아졌음.
  • 투명도 변화는 효과가 거의 없음.

연구 2: 실제 거리의 360° 이미지

  • VR처럼 실제 거리 사진을 사용해 현실감(생태적 타당도) 향상.
  • 지도 축척(크기)도 실험 변수로 추가 — 큰 축척(100m 지도) vs 작은 축척(200m 지도).
  • 참가자 50명.

결과:

  • 모든 시각화 방법(size, transparency, circle)이 지도-환경 일치 인식 향상에 기여함.
  • 작은 축척 지도일수록 오차를 인식하기 어려워서 일치도 평가가 높음.
  • 투명도 효과는 이번엔 나타남(도로 등 배경이 보이기 때문).
  • 지도가 복잡할수록 사람들은 도로 형태 등 다른 참조점도 함께 사용함.

📊 종합 결론

  1. 불확실성 시각화는 효과적이다.
    → 랜드마크 위치가 부정확해도 사용자 인식이 개선됨.
  2. 크기·투명도·불확실성 원 모두 유용하지만,
    → 단색 배경에서는 ‘투명도’ 효과가 약하고, 복잡한 지도에서는 효과가 커짐.
  3. 지도 축척이 작을수록 오차 인식이 어려움 → 불확실성 표현의 필요성 감소.
  4. 랜드마크만이 아니라 도로, 교차로 등도 인식에 도움을 줌.

💡 시사점

  • 지도 제작 시, 오픈데이터나 자원봉사자 기반 지도의 오차를 시각적으로 표현하는 것이 중요함.
  • 단, 너무 큰 아이콘이나 원은 다른 정보 가독성을 해칠 수 있어 디자인 조정 필요.
  • 향후 연구에서는 사용자별(연령, 경험 등) 차이와 시각화 디자인의 최적화를 탐색해야 함.
728x90
반응형